马尔可夫随机场(Markov Random Fields,MRF) 发表于 February 19, 2026 | 1794 个字 • 其它语言: EN本文介绍了马尔可夫随机场(MRF)的核心概念,从时间序列的马尔可夫链扩展到空间网格的 MRF,通过引入“邻域”和“团”来定义局部依赖,并详细解释了 Hammersley-Clifford 定理如何联结 MRF 与吉布斯分布。最后,结合模拟退火和 Gibbs 采样,演示了如何利用 MRF 进行图像去噪的 Python 实战。 [阅读全文]马尔可夫随机场 MRF 吉布斯分布 Ising模型 图像去噪 模拟退火 Hammersley-Clifford定理 Python实现